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a b s t r a c t

Neighborhood rough sets based attribute reduction, as a common dimension reduction method, has
been widely used in machine learning and data mining. Each attribute has the same weight (the
degree of importance) in the existing neighborhood rough set models. In this work, we introduce
different weights into neighborhood relations and propose a novel approach for attribute reduction.
The main motivation is to fully mine the correlation between attributes and decisions before calculating
neighborhood relations, and the attributes with high correlation are assigned higher weights. We first
construct a Weighted Neighborhood Rough Set (WNRS) model based on weighted neighborhood rela-
tions and discuss its properties. Then WNRS based dependency is defined to evaluate the significance
of attribute subsets. We design a greedy search algorithm based on WNRS to select an attribute subset
which has both strong correlation and high dependency. Furthermore, we use isometric search to find
the optimal neighborhood threshold. Finally, ten datasets from UCI machine learning repository and
ELVIRA Biomedical data set repository are used to compare the performance of WNRS with those of
other state-of-the-art reduction algorithms. The experimental results show that WNRS is feasible and
effective, which has higher classification accuracy and compression ratio.

© 2021 Published by Elsevier B.V.
1. Introduction

Rough set theory (RST) is viewed as a powerful mathematical
nalysis tool in machine learning, pattern recognition, knowledge
iscovery, etc., which was proposed by Pawlak in 1982 [1]. The
lassical Pawlak rough set theory needs strict equivalence rela-
ions, so it can only mine knowledge in information system with
ategorical attributes. In order to mine knowledge in information
ystem with real-valued attributes, some researchers have intro-
uced neighborhood relations, fuzzy equivalence relations, dom-
nance relations and similarity relations into Pawlak rough sets
o form neighborhood rough sets [2,3], fuzzy rough sets [4–7],
ominance-based rough sets [8,9] and similarity relation-rough
ets [10,11], respectively. These generalized rough set models
ave been widely used in attribute reduction [12–16], rule extrac-
ion [17,18], decision theory [19,20], incremental learning [21,22]
nd so on.
The similarity between samples can be well described by

eighborhood relations, and the neighborhood relations are easy
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to calculate in information systems with real-valued attributes, so
some scholars use neighborhood rough sets (NRS) to perform at-
tribute reduction in the real-valued information systems. Wu and
Zhang [23] proposed generalized rough set approximation op-
erators in neighborhood systems and discussed the relationship
between neighborhood operator systems and rough set operator
systems. Hu et al. [24] used neighborhood rough sets for fea-
ture selection in hybrid systems with categorical and real-valued
attributes. Furthermore, a feature evaluation function based on
neighborhood decision error minimization is defined to select
discrete and continuous features [25]. Chen et al. [26] defined the
lower and upper boundary regions based on neighborhood rough
sets for imbalanced data and established discernibility matrix
and discernibility function to find all reducts of hybrid decision
systems. Liang et al. [27] considered the stability of the selected
attributes to attribute reduction in neighborhood rough sets and
selected a stable attribute subset when the data is disturbed. Chen
et al. [28] designed a parallel attribute reduction algorithm in
dominance-based neighborhood rough sets, which combines the
advantages of dominance relations and neighborhood relations.
From the above neighborhood-based rough set models, we know
that these models do not consider the weight of attributes. How-
ever, in practice, the contribution of each attribute to learning

tasks may not be equally important. Sometimes, we need to
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reat attributes differently, that is, assigning different weights to
ifferent attributes. If we consider internal relevance between
onditional attributes and decisions in advance, then we can
ighlight the attributes that are highly related to the decisions
n neighborhood relations. In this way, the attributes with high
orrelation and dependency are more easily selected.
The weight of an attribute is an embodiment of its impor-

ance. Some researchers have studied how to assign weights of
ttributes in fuzzy rough sets, decision-theoretic rough sets, k-

nearest neighbor rules, fuzzy c-means and so on. Guo et al. [29]
used decision tree learning to propose a kind of granulation
weighted model for multi-granulation interval-valued decision.
Tsang et al. [30] defined a weighted Parzen window function by
using fuzzy rough sets based on kernel function and proposed
a novel k-nearest-neighbor classification algorithm based on the
weighted Parzen window function to improve the classification
accuracy. To reduce the loss of hesitant fuzzy multi-attribute
decision making, Xu and Zhang [31] calculated the optimal at-
tribute weights of incomplete systems by the maximizing de-
viation method to reduce the loss of incomplete information.
Vluymansa et al. [32] proposed a novel weight selection strategy
based on ordered weighted average to increase the antinoise
ability of fuzzy rough sets. Other methods to determine attribute
weights can be found in [33–36].

Attribute reduction, which is one of the most effective at-
tribute subset selection techniques, is to select informative and
compact attributes and to eliminate redundant and inconsistent
attributes for learning tasks. There are many attribute reduc-
tion algorithms, such as attribute reduction based on classical
rough sets, fuzzy rough sets, neighborhood rough sets, entropy
and mutual information. Attribute reduction based on classi-
cal rough sets cannot deal with continuous attributes. Attribute
reduction based on fuzzy rough sets can handle continuous at-
tributes, but cannot handle categories attributes. Neighborhood
rough sets can be used to evaluate significance of continuous
and categories attributes. The computation time complexity of
attribute reduction based on entropy and mutual information
is relatively high, it is difficult for big data processing. There
are many attribute reduction approaches based on neighbor-
hood knowledge [6,12,13]. Hu et al. [37] used neighborhood
mutual information to select features in information systems
with discrete and continuous features. Wang et al. [38] con-
structed a new rough set model, fuzzy neighborhood rough sets,
to select feature subsets, and it can reduce the possibility that
objects are misclassified. A measure, called the neighborhood
discrimination index [39], is defined to evaluate the significance
of features, and it has been used to select features with good
performance. Patil and Atique [40] proposed a neighborhood
positive region (NPR) model based on rough set theory for at-
tribute reduction to decrease running time. In order to solve the
problem of low efficiency and over-fitting of limited label data
in attribute reduction, Wang et al. [41] combined neighborhood
rough sets and local rough sets to define local neighborhood
rough set (LNRS) for attribute reduction. Mariello and Battiti [42]
combined the advantages of locality sensitive hashing and ap-
proximated nearest-neighbors techniques for feature selection.
Wang et al. [43] defined four measures to evaluate the sig-
nificance of features and use neighborhood self-information to
remove redundant features. In order to determine the optimal
(suboptimal) neighborhood radius of neighborhood rough sets,
Yang et al. [44] proposed a pseudo-label neighborhood relation by
the distance and pseudo-label of samples, and the neighborhood
rough sets and corresponding measures are re-defined by the
pseudo-label neighborhood relation to measure the significance
of attribute subsets. Considering label information and intra-class

and inter-class radii in neighborhood relations simultaneously,

2

Jiang et al. [45] proposed supervised neighborhood relations and
studied supervised neighborhood based attribute reduction in
depth. Sang et al. [46,47] studied incremental attribute reduc-
tion algorithms based on dominance conditional entropy and
neighborhood dominance conditional entropy in ordered data
and heterogeneous ordered data with the variation of objects,
respectively. The methods of attribute reduction based on other
types of rough set models can be found in [27,28].

Attributes in the existing neighborhood rough set models have
the same weights. If the weights of attributes are the same in
neighborhood relations, the attributes that are highly related to
the decisions will not be represented to have more degree of
importance, and these attributes may not be preferred in at-
tribute reduction. To put more weights on the attributes that
are highly relevant to decisions in attribute reduction, we first
use the correlation coefficients of attributes with respect to de-
cisions to re-assign weights of attributes, then define weighted
neighborhood rough sets (WNRS) and some measures. As with
neighborhood rough sets (NRS), the dependency of WNRS can be
used to characterize the ability of attribute subsets to distinguish
samples with different decisions. We use a greedy search strat-
egy to select an optimal attribute subset which has both strong
correlation and high dependency. Furthermore, isometric search
strategy is used to find the optimal neighborhood threshold of
different datasets. Finally, we use ten datasets from UCI Machine
Learning Repository and ELVIRA Biomedical data set repository to
verify the validity and stability of attribute reduction algorithm
based on weighted neighborhood rough sets (WNRS) and com-
pare it with other typical reduction algorithms. The experimental
results show that WNRS is feasible and effective for attribute
reduction.

This paper is organized as follows. In Section 2, we briefly
review the basic concept of neighborhood rough sets and point
out the shortcomings of neighborhood rough sets. In Section 3, we
present the definition of weighted neighborhood rough sets and
some measures of evaluation attributes and discuss its properties.
In Section 4, we design a heuristic algorithm to find a reduct of
a decision information table. In Section 5, we use ten datasets to
compare the proposed method with 3 classical attribute reduc-
tion algorithms from three aspects. In Section 6, we summarize
the paper and propose the future work.

2. Related work

In this section, we review the related knowledge of classi-
cal neighborhood rough sets and point out the shortcomings
of neighborhood rough sets. Detailed information can be found
in [23,24].

2.1. Neighborhood rough sets

Given a decision information table IS = (U, C,D), where
U = {x1, x2, . . . , xn} is a sample set, C = {a1, a2, . . . , am} is a
conditional attribute set to characterize the samples and D =
{d1, d2, . . . , dr} is a decision attribute set to mark the category
of samples. U/D = {D1,D2, . . . ,Dk} is a decision partition on U
to D.

In a given decision information table IS = (U, C,D), ∀x ∈ U
and B ⊆ C , the neighborhood similarity class of sample x under
attribute subset B is defined as

Nδ
B (x) = {y|dB(y, x) ≤ δ, y ∈ U}, (1)

where dB is a distance function with attribute subset B and
δ(δ > 0) is a neighborhood threshold. The neighborhood similar-
ity class is also called the neighborhood information granule. In

this paper, the Euclidean distance is used to measure the distance
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etween two samples. The formula of Euclidean distance is given
s follows

dB(x, y) =
√∑

ai∈B

(f (x, ai)− f (y, ai))2, (2)

here f (x, a) is the value of sample x under attribute a.
In IS = (U, C,D), ∀X ⊆ U , B ⊆ C and a given neighborhood

hreshold δ, two subsets of U , the upper approximation and lower
pproximation of X with respect to δ in IS = (U, C,D), are defined
s

N
δ

B(X) = {x|N
δ
B (x) ∩ X ̸= ∅};

Nδ
B(X) = {x|N

δ
B (x) ⊆ X},

(3)

where N
δ

B and Nδ
B are a pair of approximation operators. X with

espect to N
δ

B and Nδ
B is accurate, if N

δ

B(X) = Nδ
B(X); otherwise

is rough. From the definitions of the above two approximation
perators, we can get Nδ

B(X) ⊆ X ⊆ N
δ

B(X).
Let IS = (U, C,D) be a decision information table, for a given

ttribute subset B ⊆ C and a threshold δ, the upper and lower
pproximations of D with respect to B are defined as

N
δ

B(D) =
k
∪
i=1

N
δ

B(Di);

Nδ
B(D) =

k
∪
i=1

Nδ
B(Di),

(4)

where U/D = {D1,D2, . . . ,Dk}. The boundary and positive re-
gions of D with respect to B are defined as

BNδ
B (D) = N

δ

B(D)− Nδ
B(D);

POSδ
B(D) = ∪

Di∈U/D
Nδ

B(Di).
(5)

The size of BNδ
B (D) reflects the ability of attribute subset B to

approximate D. The smaller the size of BNδ
B (D) is, the stronger the

ability of B to approximate D is. The size of POSδ
B(D) reflects the

number of samples which can be classified correctly under B.
In IS = (U, C,D), for a given attribute subset B ⊆ C and

a threshold δ, the dependency degree of D with respect to B in
IS = (U, C,D) is defined as

γ δ
B (D) =

|POSδ
B(D)|
|U |

, (6)

where |·| represents the cardinality of a set. γ δ
B (D) is used to

easure the ability of attribute subset B to approximate D. The
arger the γ δ

B (D) is, the stronger the approximation ability of the
ttribute subset B is. According to the definition of the depen-
ency degree, 0 ≤ γ δ

B (D) ≤ 1. There are two factors that affect
the value of the dependency degree. One is the neighborhood
threshold δ to control the size of neighborhood classes. The larger
the δ is, the smaller the dependency degree is. Other is the
attribute subset B to characterize the samples. As the attributes
increase gradually, the value of dependency degree increases

2.2. Shortcomings of neighborhood rough sets

When we calculate the neighborhood classes of neighborhood
rough sets, we use the same weight for each attribute. That is
to say, the degree of importance of each attribute is the same in
attribute reduction. The internal relationship between attributes
and decisions is not fully explored, and the calculation of neigh-
borhood classes using same weights may lead to the attributes
with large values more easily selected. In order to illustrate the
necessity of weighting each attribute before attribute reduction,
we use the following example to illustrate the shortcomings of
classical neighborhood rough sets.
3

Table 1
A decision information table.
U a1 a2 a3 a4 d

x1 0.28 0.89 0.21 0.29 1
x2 0.44 0.87 0.19 0.26 1
x3 0.48 0.51 0.20 0.39 1
x4 0.50 0.50 0.26 0.38 1
x5 0.61 0.69 0.29 0.35 1
x6 0.39 0.71 0.27 0.18 2
x7 0.37 0.35 0.33 0.24 2
x8 0.62 0.90 0.38 0.20 2
x9 0.76 0.86 0.35 0.27 2
x10 0.89 0.50 0.39 0.28 2

Table 2
Neighborhood information granules are formed by B1 and
B2 .
U N(x)0.1B1

(x) N(x)0.1B2
(x)

x1 {x1} {x1, x2, x5}
x2 {x2} {x1, x2}
x3 {x3, x4} {x3, x4, x5}
x4 {x3, x4} {x3, x4, x5}
x5 {x5} {x1, x3, x4, x5, x9}
x6 {x6} {x6, x7}
x7 {x7} {x6, x7, x8, x9, x10}
x8 {x8} {x7, x8, x9, x10}
x9 {x8} {x5, x7, x8, x9, x10}
x10 {x10} {x7, x8, x9, x10}

Example 2.1. A given decision information table IS = (U, C,D) is
shown in Table 1, where U = {x1, x2, . . . , x10} is a sample space,
the conditional and decision attribute sets are C = {a1, a2, a3, a4}
and D = {d}, respectively. These samples are divided into two
decision classes D1 = {x1, x2, . . . , x5} and D2 = {x6, x7, . . . , x10}
by d. Given two attribute subsets B1 = {a1, a2}, B2 = {a3, a4}
and a neighborhood threshold δ = 0.1, the generated neigh-
borhood information granules by B1 and B2 under δ = 0.1 are
shown in Table 2. From Table 2, we know that the granularity
of neighborhood information granules induced by B1 is finer
than that induced by B2. According to the definition of POSδ

B(D)
and Table 2, we know that POS0.1B1

(D) = U and POS0.1B2
(D) =

{x1, x2, x3, x4, x6, x7, x8, x10}. Therefore, we can get γ 0.1
B1

(D) = 1
and γ 0.1

B2
(D) = 0.8. So from the above point of view, it is obvious

that the ability of B1 to approximate D is better than that of B2. We
use k-nearest neighbor (KNN) and radial basis function support
vector machine (RBF-SVM) classifiers to classify the unknown
area, and the classification results are shown in Fig. 1, where k of
KNN rules is 3 and the control term C of RBF-SVM is set to 1000,
and the Gaussian kernel parameter σ of RBF-SVM is automatically
optimized by MATLAB. As can be seen from Fig. 1, the separa-
bility of attribute subset B2 is significantly better than that of
attribute subset B1. Under attribute subset B1, some samples are
misclassified by KNN and RBF-SVM and over-fitting has occurred
(see Fig. 1(a) and (b)); under attribute subset B2, all samples are
classified correctly by KNN and RBF-SVM and over-fitting has not
occurred. The ability of B1 to approximate D is better than that
of B2, but the separability of B1 with respect to D is worse than
that of B2. Therefore, it is limited to use the dependency degree of
neighborhood rough sets to measure the significance of attribute
subsets. Next, we will introduce an effective model to measure
the significance of attribute subsets.

3. Weighted neighborhood rough sets

One of the shortcomings of neighborhood rough sets is that
it uses the same weight for each attribute to perform attribute
reduction. It is important to know that different attributes have
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ifferent degree of importance for decision-making. So we should
se different weights to calculate neighborhood similarity classes
or different attributes. A novel rough set model is proposed
ere, named weighted neighborhood rough sets, to evaluate the
ignificance of attribute subsets.
Given a decision information table IS = (U, C,D), ∀x ∈ U,∀a ∈

C , f (x, a) is the value of sample x with respect to attribute a. Let
the coefficient matrix be

A =

⎛⎜⎜⎝
f (x1, a1) f (x1, a2) · · · f (x1, am)
f (x2, a1) f (x2, a2) · · · f (x2, am)

...
...

...
...

f (xn, a1) f (xn, a2) · · · f (xn, am)

⎞⎟⎟⎠ ,

the decision vector be Y = (f (x1, d), f (x2, d), . . . , f (xm, d))T and
the partition coefficients of attributes be υ = (υ(a1), υ(a2),
. . . , υ(am))T . In order to determine the optimal partition coef-
ficients of attributes, we transform the problem of seeking the
optimal coefficients into an optimization problem as follows

υ∗ = argmin ∥Aυ − Y∥2, (7)

where ∥ · ∥2 represents 2-norm of a vector. In order to solve (7),
first assuming Aυ = Y , then both sides of Aυ = Y are multiplied
by AT to get ATAυ = ATY , finally, by solving ATAυ = ATY , we get

υ = (ATA)−1ATY . (8)

Especially, when matrix (ATA) is not invertible or the objective
function (7) needs a penalty term, we convert (7) to J(υ) =
∥Aυ − Y∥2 +∥υ∥2. Since J(υ) is a convex function, the minimum
of J(υ) is obtained when J ′(υ) = 0. J ′(υ) = 2AT (Aυ−Y )+2υ = 0.
Therefore, (ATA + E)υ = ATY , where E is an identity matrix.
So υ = (ATA + E)−1ATY . When matrix ATA or ATA + E is high
dimensional or close to ill-conditioned, we use ‘‘\’’ in MATLAB or
4

subfunction ‘‘np.linalg.solve’’ in Numpy to solve ATAυ = ATY or
(ATA+ E)υ = ATY , instead of solving the inverse matrix.
|υ(a)| is the absolute value of υ(a), which reflects the relation

between attribute a and decision D. The larger the |υ(a)| is, the
stronger the internal relevance of attributes and decisions is.

Definition 1. Given a decision information table IS = (U, C,D),
∀a ∈ C , the weight of a is defined as

ω(a) =
|C | |υ(a)|∑
ai∈C
|υ(ai)|

(9)

Property 1. Given a decision information table IS = (U, C,D), ∀a ∈
C, the weight vector with attributes ω = (ω(a1), ω(a2), . . . , ω(am))T ,
we have

(1) ω(a) ≥ 0;

(2)
∑
ai∈C

ω(ai) = |C |. (10)

roof. (1)–(2) can be proved by Definition 1 directly.

From Property 1, we can see that the weights of attributes
re assigned by using the partition coefficients between the con-
itions and decisions. The higher the correlation between the
onditional attribute and the decision is, the higher the assigned
eight of the conditional attribute is.

efinition 2. Given a decision information table IS = (U, C,D),
= (ω(a1), ω(a2), . . . , ω(am))T is a weight vector with attributes,

or attribute subset B(B ⊆ C) and neighborhood threshold δ, the



M. Hu, E.C.C. Tsang, Y. Guo et al. Knowledge-Based Systems 220 (2021) 106908

w

w
o
a
0
b

h
c
w
h
w

i

P

D

X

T
t
r

D
a
{

r

T
p
t
t
i
a
a
o
s
a

P
a
{

∪

γ

a
T

·

i
n
r
r
e
d
r
o
l

eighted neighborhood similarity relation is defined as

W δ
B = {(x, y)|

√∑
a∈B

(ω(a)(f (x, a)− f (y, a)))2 ≤ δ}

= {(x, y)|
√∑

a∈B

ω2(a)(f (x, a)− f (y, a))2 ≤ δ}

(11)

here ω(a) ≥ 0,
∑

a∈C |ω(a)| = |C | and ω(a) is the weight
f attribute a. When ω(a) > 1, the degree of importance of
ttribute a will be increased in the calculation of relations; when

< ω(a) < 1, the degree of importance of attribute a will
e decreased; when ω(a) = 1, the degree of importance of

attribute a will remain unchanged; when ω(a) = 0, attribute a
as been removed before attribute reduction. ∀a ∈ C , W δ

B is a
lassical neighborhood similarity relation, if ω(a) = 1. Therefore,
eighted neighborhood relation is a generalization of neighbor-
ood relation, and the neighborhood relation is a special case of
eighted neighborhood relation. Obviously, relation matrix W δ

B is
a symmetric matrix.

Property 2. Given a decision information table IS = (U, C,D), W δ
B

s a weighted neighborhood similarity relation, ∀x, y ∈ U, we have

(1) Reflexivity : (x, x) ∈ W δ
B ;

(2) Symmetry : (x, y) ∈ W δ
B ⇐⇒ (y, x) ∈ W δ

B .
(12)

roof. It is immediate from formula (11).

efinition 3. Given a decision information table IS = (U, C,D)
and a weighted neighborhood similarity relation W δ

B , the
weighted neighborhood similarity class is defined as

WNδ
B (x) = {y|(y, x) ∈ W δ

B , y ∈ U}. (13)

The weighted neighborhood similarity class is also called the
weighted neighborhood information granule. Threshold δ con-
trols the size of the information granule, the larger the δ is,
the larger the size of the information granule is. All weighted
neighborhood information granules form a cover on U .

Definition 4. Given a decision information table IS = (U, C,D)
and a weighted neighborhood similarity relation W δ

B , ∀X ⊆ U ,
the upper and lower approximations of X with respect to W δ

B are
defined as

W
δ

B(X) = {x|WNδ
B (x) ∩ X ̸= ∅};

W δ
B(X) = {x|WNδ

B (x) ⊆ X}.
(14)

with respect to the relation W δ
B is accurate, if W

δ

B(X) = W δ
B(X);

otherwise, X with W δ
B is rough. Obviously, W

δ

B(X) ⊇ X ⊇ W δ
B(X).

The boundary of X with respect to relation W δ
B is defined as

WBNδ
B (X) = W

δ

B(X)−W δ
B(X). (15)

he size of WBNδ
B (X) reflects the roughness of X with respect to

he relation W δ
B . The smaller the size of WBNδ

B (X) is, the finer the
elation W δ

B is; otherwise, the rougher the relation W δ
B is.

efinition 5. Given a decision information table IS = (U, C,D)
nd a weighted neighborhood similarity relation W δ

B , for U/D =
D1,D2, . . . ,Dk}, the upper and lower approximations of D with
espect to the relation W δ

B are defined as

W
δ

B(D) =
k
∪
i=1

W
δ

B(Di);

W δ
B(D) =

k
∪
i=1

W δ
B(Di).

(16)
n

5

The decision boundary and decision positive regions of D with
respect to the relation W δ

B are defined as

WBNδ
B (D) = W

δ

B(D)−W δ
B(D);

WPOSδ
B(D) = ∪

Di∈U/D
W δ

B(Di).
(17)

he size of decision boundary region and the size of decision
ositive region reflect the roughness of decision D with respect to
he relationW δ

B .WBNδ
B (D) is to measure the roughness ofW δ

B from
he two aspects of upper and lower approximations. WPOSδ

B(D)
s to measure the roughness of W δ

B from the aspects of lower
pproximation. Generally speaking, the samples of the lower
pproximation can be classified correctly by W δ

B , some samples
f the upper approximation may be classified correctly and some
amples may be misclassified. So the measure ability of the lower
pproximation is better than that of the upper approximation.

roperty 3. Given a decision information table IS = (U, C,D)
nd a weighted neighborhood similarity relation W δ

B , where U/D =
D1,D2, . . . ,Dr}, we have

(1) W
δ

B(D) = U;

(2) WPOSδ
B(D) ∩WBNδ

B (D) = ∅;

(3) WPOSδ
B(D) ∪WBNδ

B (D) = W
δ

B(D).

(18)

Proof. (1) There are Di ⊆ W
δ

B(Di) and ∪r
iDi = U , according to

Definition 4, so we have U ⊆ W
δ

B(Di), obviously W
δ

B(D) ⊆ U , so
W

δ

B(D) = U .
(2) There are WBNδ

B (D) = W
δ

B(D) − W δ
B(D) and WPOSδ

B(D) =
∪Di∈U/DW δ

B(Di), so WPOSδ
B(D) ∩WBNδ

B (D) = ∅.
(3) From WBNδ

B (D) = W
δ

B(D) − W δ
B(D) and WPOSδ

B(D) =

Di∈U/DW δ
B(Di) = W δ

B(D), so WPOSδ
B(D) ∪WBNδ

B (D) = W
δ

B(D).

Definition 6. Given a decision information table IS = (U, C,D)
and W δ

B is a weighted neighborhood similarity relation, the de-
pendency degree of D with respect to W δ

B is defined as

γ δ
B (D) =

|WPOSδ
B(D)|
|U |

. (19)

δ
B (D) is used to measure the ability of attribute subset B to
pproximate D, where the attributes of C have different weights.
he larger the γ δ

B (D) is, the stronger the approximation ability
of attribute subset B is. From the above definition, we know
that 0 ≤ γ δ

B (D) ≤ 1. There are three factors that affect the
value of γ , the first is the neighborhood threshold δ to control
the size of neighborhood granules, the second is the attribute
subset B to characterize the samples, and the third is the weights
of attributes. When the weights of the attributes are given, γ

increases with the decrease of δ or the increase of attributes. Next,
we will discuss how to determine the weights of attributes.

It can be seen from Definition 2 that when ω(a1) = ω(a2) =
· · = ω(am) = 1, weighted neighborhood rough sets degenerate
nto classical neighborhood rough sets. That is to say, weighted
eighborhood rough set is a generalized model of neighborhood
ough sets. The weights of attributes in weighted neighborhood
ough sets are very important for attribute reduction. It is nec-
ssary to mine the internal relevance between attributes and
ecisions before performing attribute reduction. If the internal
elevance between attributes and decisions are high, the weights
f attributes should be higher; otherwise the weights should be
ower.

In order to understand the calculation process of the weighted
eighborhood rough set and the difference between it and the
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lassical neighborhood rough set, we continue to calculate the
ependency degree of weighted neighborhood rough sets under
ifferent attribute subsets in Example 2.1. Firstly, from formulas
8) and (9), we can get υ = (−0.6601, 0.1850, 7.3070,−1.3485)
nd ω = (0.2779, 0.0779, 3.0764, 0.5677). Since ω(a1), ω(a2) and
(a4) are less than 1, the effects of a1, a2 and a4 are reduced
n weighted neighborhood rough sets based attribute reduction;
(a3) is more than 1, the effect of a3 is raised in weighted neigh-
orhood rough sets based attribute reduction. Under attribute
ubsets B1 = {a1, a2}, B2 = {a3, a4} and neighborhood threshold
= 0.1, weighted neighborhood similarity relations generated by
1 and B2 are represented as follows

0.1
B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 1 1 1
0 0 0 0 1 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
nd

0.1
B2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

eighted neighborhood information granules are induced by
0.1
B1

and W 0.1
B2

in Table 3. From Table 3, we can see that the
ranularity of the weighted neighborhood information granules
nduced by B2 is finer than that induced by B1. From Definition 5
nd weighted neighborhood information granules induced by B1
nd B2, we can get WPOS0.1B1

(D) = ∅ and WPOS0.1B2
(D) = U .

herefore, we can get γ 0.1
B1

(D) = 0 and γ 0.1
B2

(D) = 1. That is to
ay, the ability of attribute subset B2 to approximate D is better
han that of attribute subset B1 in weighted neighborhood rough
ets. However, the ability of attribute subset B2 to approximate
is worse than that of attribute subset B1 in classical neighbor-

hood rough sets. From Fig. 1, we can see that the separability
of samples under B2 is better than that of B1. Therefore, the
eighted neighborhood rough set model can repair the short-
omings of neighborhood rough set model. It is more reasonable
o measure the degree of importance of attribute subset by the
ependency degree of weighted neighborhood rough sets than by
he dependency degree of neighborhood rough sets.

roperty 4 (Tpye-I Monotonicity). Given a decision information
able IS = (U, C,D), for B1 ⊆ B2 ⊆ C and a neighborhood threshold
δ, we have

(1) W δ
B1 ⊇ W δ

B2;

(2) ∀X ⊆ U,W
δ

B1 (X) ⊇ W
δ

B2 (X),W
δ
B1 (X) ⊆ W δ

B2 (X);

(3) WPOSδ
B1 (D) ⊆ WPOSδ

B2 (D), γ
δ
B1 (D) ≤ γ δ

B2 (D).

(20)

Proof. (1) ∀x, y ∈ U , from B1 ⊆ B2 and Definition 2, we have∑
a∈B1
|ω2(a)|(f (x, a)− f (y, a))2 ≤

∑
a∈B2
|ω2(a)|(f (x, a)− f (y, a))2,

so W δ
⊇ W δ .
B1 B2

a

6

Table 3
Weighted neighborhood information granules under B1 and B2 .
U WN0.1

B1
(x) WN0.1

B2
(x)

x1 {x1, x2, x3, x4, x5, x6, x7, x8} {x1, x2, x3}
x2 {x1, x2, x3, x4, x5, x6, x7, x8, x9} {x1, x2, x3}
x3 {x1, x2, x3, x4, x5, x6, x7, x8, x9} {x1, x2, x3}
x4 {x1, x2, x3, x4, x5, x6, x7, x8, x9} {x4, x5}
x5 {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} {x4, x5}
x6 {x1, x2, x3, x4, x5, x6, x7, x8} {x6}
x7 {x1, x2, x3, x4, x5, x6, x7, x8} {x7, x9}
x8 {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} {x8, x10}
x9 {x2, x3, x4, x5, x8, x9, x10} {x7, x9}
x10 {x5, x8, x9, x10} {x8, x10}

(2) According to B1 ⊆ B2 and (1) , there is WNδ
B2
(x) ⊆ WNδ

B1
(x),

if x ∈ W
δ

B2 (X), we have WNδ
B2
(x)∩X ̸= ∅, and then WNδ

B1
(x)∩X ̸=

∅, from Definition 4 we can get x ∈ W
δ

B1 (X), so W
δ

B1 (X) ⊇ W
δ

B2 (X);
n the same way, we can get W δ

B1 (X) ⊆ W δ
B2 (X).

(3) According to (2), ∀Di ∈ U/D, we have W δ
B1 (Di) ⊆ W δ

B2 (Di),
WPOSδ

B1
(D) = ∪Di∈U/DW δ

B1 (Di) and WPOSkB2 (D) = ∪Di∈U/DW k
B2 (Di),

so WPOSδ
B1
(D) ⊆ WPOSδ

B2
(D); then we have γ δ

B1
(D) ≤ γ δ

B2
(D).

Property 4 shows that the dependency degree of weighted
neighborhood rough sets increases monotonically with the in-
crease of attributes. We often use greedy search strategy to find
a minimum attribute subset which has the same ability to char-
acterize samples as the original attribute set. The monotonicity
of the dependency function about attributes just satisfies the
demand of designing greedy search algorithm.

Property 5 (Tpye-II Monotonicity). Given a decision information
table IS = (U, C,D), for B ⊆ C and two given neighborhood
thresholds δ1 and δ2, δ1 ≤ δ2, we have

(1) W δ1
B ⊆ W δ2

B ;

(2) ∀X ⊆ U,W
δ1
B (X) ⊆ W

δ2
B (X) and W δ1

B (X) ⊇ W δ2
B (X);

(3) WPOSδ1
B (D) ⊇ WPOSδ2

B (D), γ δ1
B (D) ≥ γ

δ2
B (D).

(21)

roof. (1) As δ1 ≤ δ2, ∀x, y ∈ U , if
√∑

a∈B ω2(a)(f (x, a)− f (y, a))2

δ1, then
√∑

a∈B ω2(a)(f (x, a)− f (y, a))2 ≤ δ2, so W δ1
B ⊆ W δ2

B .
(2) According to δ1 ≤ δ2 and (1), there isWNδ1

B (x) ⊆ WNδ2
B (x), if

x ∈ W
δ1
B (X), we have WNδ1

B (x)∩X ̸= ∅, and then WNδ2
B (x)∩X ̸= ∅,

therefore x ∈ W
δ2
B (X), so W

δ1
B (X) ⊆ W

δ2
B (X); in the same way, we

can get W δ1
B (X) ⊇ W δ2

B (X).
(3) According to (2), ∀Di ∈ U/D, we have W δ1

B (Di) ⊇ W δ2
B (Di),

so WPOSδ1
B (D) = ∪Di∈U/DW

δ1
B (Di), WPOSδ2

B (D) = ∪Di∈U/DW
δ2
B (Di),

so WPOSδ1
B (D) ⊇ WPOSδ2

B (D); then we have γ
δ1
B (D) ≥ γ

δ2
B (D).

Property 5 shows that the value of dependency degree is re-
ated to the weighted neighborhood information granules. How-
ver, for a given attribute subset, the size of information granules
s controlled by threshold δ of weighted neighborhood rough
ets. Therefore, the dependency degree increases monotonically
ith the decrease of threshold δ. A reasonable threshold δ is
ery important for attribute reduction in weighted neighborhood
ough sets. Later, we will show how to set δ.

From Properties 4 and 5, we know that the ability of attribute
ubsets to approximate decisions depends not only on the at-
ribute subset to characterize samples of universe, but also on the
hreshold δ of weighted neighborhood rough sets.

efinition 7. Given a decision information table IS = (U, C,D),

n attribute subset B ⊆ C , a neighborhood threshold δ and an
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T
A

able 4
new decision information table.
U a1 a2 a3 a4 d

x1 0.28 0.89 0.21 0.29 1
x2 0.44 0.87 0.19 0.26 1
x3 0.48 0.51 0.20 0.39 1
x4 0.50 0.50 0.26 0.38 1
x5 0.61 0.69 0.29 0.35 1
x6 0.39 0.71 0.27 0.18 2
x7 0.37 0.35 0.33 0.24 2
x8 0.62 0.90 0.38 0.20 2
x9 0.76 0.86 0.35 0.27 2
x10 0.89 0.50 0.39 0.28 2

x11 1.00 1.00 0 0 1
x12 0 0 1.00 1.00 2

attribute a ∈ B. a is called the redundant attribute of B with
respect to D, if γ δ

B−{a}(D) = γ δ
B (D). a is called the necessary

attribute of B with respect to D, if γ δ
B−{a}(D) < γ δ

B (D). Attribute
subset B is called a reduct of C with respect to D, if the following
two conditions are satisfied
(1) sufficiency : γ δ

B (D) = γ δ
C (D);

(2) necessity : ∀a ∈ B, γ δ
B−{a}(D) < γ δ

B (D).
(22)

From (1), we know that the dependency degree of attribute
subset B with respect to D is the same as that of attribute
subset C with respect to D. According to (2), we can see that all
attributes in B are necessary attributes. Therefore, B is a minimum
attribute subset with the same dependency degree as C . There
are different reducts using different neighborhood thresholds. For
a given threshold, reduct is not unique in decision information
table IS = (U, C,D). Further considering Example 2.1, we have
γ 0.1
B2−{a3}

(D) = 0, γ 0.1
B2−{a4}

(D) = 0.7 and γ 0.1
B2

(D) = γ 0.1
C (D) =

1. Therefore, γ 0.1
B2−{a3}

(D) < γ 0.1
B2

(D), γ 0.1
B2−{a4}

(D) < γ 0.1
B2

(D) and
γ 0.1
B2

(D) = γ 0.1
C (D). So B2 = {a3, a4} is a reduct in Example 2.1.

Remark. Can WNRS be replaced by neighborhood rough sets
after normalizing all attribute values to [0,1]? Further considering
Example 2.1, we first normalize all attribute values to [0,1], then
compute dependencies of neighborhood rough sets under B1 and
B2 at δ = 0.35. γ 0.35

B1
= 0.4 and γ 0.35

B2
= 1. It seems that

neighborhood rough sets after normalizing all attribute values to
[0,1] can achieve the same effect as WNRS in Example 2.1, (i.e. the
ability of B2 to approximate D is better than that of B1 under
neighborhood rough sets after normalizing all attribute values
to [0,1]). In fact, WNRS performs attribute reduction better than
neighborhood rough sets after normalizing all attribute values to
[0,1] in most cases. Next, we will add two objects to Example 2.1
to illustrate that neighborhood rough sets after normalizing all
attribute values to [0,1] cannot replace WNRS.

Example 3.1. There is a decision information table shown in
Table 4, where x1-x10 are from Example 2.1, x11 and x12 are two
new objects.

For Example 3.1, we normalize all attribute values to [0,1], and
the normalized result is itself. For B1 = {a1, a2} and B2 = {a3, a4},
the dependencies of neighborhood rough sets are γ 0.1

B1
= 1 and

γ 0.1
B2
= 0.8333. That is to say, the ability of B1 to approximate

D is better than that of B2 under neighborhood rough sets after
normalizing all attribute values to [0,1]. However, the depen-
dencies of WNRS are γ 0.1

B1
= 0.1667 and γ 0.1

B2
= 1. From the

above discussion, we know that neighborhood rough sets after
normalizing all attribute values to [0,1] cannot replace WNRS.
WNRS can mine the correlation of attributes and decisions be-
fore computing neighborhood relations. However, neighborhood
7

rough sets after normalizing all attribute values to [0,1] do not
consider the correlation of attributes and decisions, only scale
the size of values of an attribute by the maximum value and
minimum value of the attribute.

4. Attribute reduction algorithm based on weighted neighbor-
hood rough sets

From the above analysis, we can see that the dependency de-
gree of weighted neighborhood rough sets can be used to evaluate
the significance of attribute subsets. If the dependency degree of
an attribute subset is greater, its ability to distinguish samples
from different decisions is stronger. For a decision information
table with m conditional attributes, there are 2m

− 1 candidate
attribute subsets. It is unrealistic to calculate the dependency
degree of each attribute subset one by one. There are many
strategies to find a reduct, such as genetic algorithm, branch and
bound, greedy search, etc. In this paper, our main contribution
is to evaluate attribute subsets, so we choose a greedy search
algorithm to find an optimal attribute subset. Next, we will define
two measures to evaluate the significance of an attribute relative
to an attribute subset.

Definition 8. Given a decision information table IS = (U, C,D),
an attribute subset B ⊆ C , a neighborhood threshold δ and an
attribute a ∈ B. the internal significance of a relative to B under
D is defined as

sigin(a, B,D) = γ δ
B (D)− γ δ

B−{a}(D). (23)

Obviously, according to Definition 6 and Property 4, we have
0 ≤ sigin(a, B,D) ≤ 1. a is not an internal necessary attribute
relative to B, if sigin(a, B,D) = 0, and a can be removed from B. a
is an internal necessary attribute relative to B, if sigin(a, B,D) > 0.

Definition 9. Given a decision information table IS = (U, C,D),
an attribute subset B ⊆ C , a neighborhood threshold δ and an
attribute a ∈ C − B. the external significance of a relative to B
under D is defined as

sigout (a, B,D) = γ δ
B∪{a}(D)− γ δ

B (D). (24)

Obviously, from Definition 6 and Property 4, we have 0 ≤
sigout (a, B,D) ≤ 1. a is not an external necessary attribute relative
to B, if sigout (a, B,D) = 0. a is an external necessary attribute
relative to B, if sigout (a, B,D) > 0. When we are doing forward
search, each round will select the attribute with the most value
of sigout (a, B,D) and sigout (a, B,D) > 0 to the selected attribute
subset.

There are two greedy search strategies for attribute reduction,
one is sequential forward search, the other is sequential back-
ward elimination. First, we use the sequential forward search to
select attributes, then use the backward elimination to eliminate
attributes of sigin(a, B,D) = 0 in the selected attribute subset.
In order to use sequential forward search, when B = ∅, we rule
γ δ
B (D) = 0 and ∅ is not a reduct. Weighted neighborhood rough

sets based attribute reduction (WNRS) is shown in Algorithm 1.
There is a parameter δ in Algorithm 1. δ is the threshold that
controls the size of weighted neighborhood granules, and it needs
to be set in advance. δ can be set by the prior knowledge of
experts, or found by isometric search. In the experimental section
we will show how to search for the threshold δ.

In step 1, the initial state of red for sequential forward search
is an empty set, and the time complexity is O(1). In step 2,
we use formula (8) to calculate the weights of all conditional
attributes, and the time complexity is O(|U | × |C |). In steps 3–5,
weighted neighborhood similarity relations W δ

a of all conditional
attributes are calculated by formula (11), and the time complexity
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Algorithm 1 Attribute reduction based on weighted neighbor-
hood rough sets (WNRS)
Require: A decision information table IS = (U, C,D) and a

threshold δ.
Ensure: Attribute subset red.
1: Initialize: red← ∅; // red is initialized to an empty set;
2: Calculate the weight of each conditional attribute by formula

(9);
3: for each a ∈ C do
4: Compute weighted neighborhood similarity relation W δ

a by
formula (11);

5: end for
6: while C − red ̸= ∅ do
7: for each a ∈ C − red do
8: Compute the dependency degree γ δ

red∪{a}(D) by formula
(19);

9: sigout (a, red,D) = γ δ
red∪{a}(D)− γ δ

red(D);
10: end for
11: Find ak with maximum value of sigout (ak, red,D);
12: if sigout (ak, red,D) = 0 then
13: break; // Loop termination.
14: else
15: red← red ∪ {ak}; // Put ak into red.
16: end if
17: end while
18: for each a ∈ red do
19: sigin(a, red,D) = γ δ

red(D)− γ δ
red−{a}(D);

20: if sigin(ak, red,D) = 0 then
21: red ← red − {ak}; // Remove internal unnecessary

attributes.
22: end if
23: end for
24: return red;

is O(|U |2 × |C |). In steps 6–17, According to the idea of greedy
search, we find out the attribute with the greatest external signif-
icance relative to the current reduction and add it to the current
reduction, and the time complexity is O(|U | × |C | × |U/D|). The
attributes selected in steps 6–9 may have internal unimportant
attributes. So we need to remove the attributes with 0 internal
significance in steps 18–23, and the time complexity is O(|U | ×
|red| × |U/D|).

5. Experimental analysis

In this section, we will design a series of experiments to verify
the effectiveness and robustness of the proposed WNRS algo-
rithm. Three excellent attribute reduction algorithms, neighbor-
hood rough sets based attribute reduction (NRS) [24], neighbor-
hood discrimination index based attribute reduction (NDI) [39]
and neighborhood self-information based attribute reduction
(NSI) [43], are selected to compare with WNRS. We will compare
these four algorithms from three aspects: (1) the classification
accuracies under different classifiers, (2) the running time of re-
duction algorithms and (3) the number of selected attributes. All
algorithms are executed in MATLAB 2015b, and run in hardware
environment with Inter(R) Core(TM) i7-4790 CPU @3.60 GHz
3.60 GHz, with 16 GB RAM.

We use KNN and RBF-SVM classifiers to evaluate the perfor-
mance of these algorithms. The ten datasets downloaded from
UCI machine learning repository [48] and ELVIRA Biomedical
data set repository [49] are described in Table 5. The first eight
datasets are from UCI, and the last two datasets are from ELVIRA.

Values of all attributes are first normalized into the interval [0, 1].

8

Table 5
Data description.
No. Datasets Attributes Samples Classes

1 Seeds 8 210 3
2 Wine 14 178 3
3 vowel-context 14 990 11
4 Wdbc 31 569 2
5 Wpbc 34 198 2
6 sat-tst 37 2000 6
7 sat-trn 37 4435 6
8 sonar 61 208 2
9 Lung-Cancer 181 12534 2
10 Prostate-Cancer 136 12601 2

Fig. 2. Number of selected attribute and accuracy varying with neighborhood δ

Seeds).

Fig. 3. Number of selected attribute and accuracy varying with neighborhood δ

Wine).

e employ 10-fold cross validation to evaluate the performances
f these algorithms. In the training stage, we use the training set
o reduce attributes and select an optimal attribute subset. In the
alidation stage, the sub data extracted from the validation set by
he selected attribute subset is used to calculate the classification
ccuracies of KNN and RBF-SVM. After ten cycles, the average
erformance of the ten cycles is regarded as the final perfor-
ance. In the experiments, we search δ from 0.05 to 0.5 with step
.05 and find the optimal δ for each dataset. The neighborhood
hresholds of the other three algorithms are set in the same way.
or WNRS, we use υ = (ATA+ E)−1ATY to compute υ of the high
imensional datasets (Lung-Cancer and Prostate-Cancer) and use
= (ATA)−1ATY to compute υ of the low dimensional datasets.
For WNRS algorithm, the number of selected attributes and

lassification accuracies are shown in Figs. 2–11 under different
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Fig. 4. Number of selected attribute and accuracy varying with neighborhood δ

vowel-context).

Fig. 5. Number of selected attribute and accuracy varying with neighborhood δ

Wdbc).

Fig. 6. Number of selected attribute and accuracy varying with neighborhood δ

Wpbc).

. In Figs. 2–11 , the δ corresponding to the red dot indicates the
est performing δ on average classification accuracy under KNN
nd RBF-SVM. From Figs. 2, 3, 5 and 6, we can see that as the
increases, the number of selected attributes first increases and

hen decreases (Seeds, Wine, Wdbc and Wpbc). From Figs. 4, 7, 8,
, 10 and 11, as the δ increases, the number of selected attributes

increases (vowel-context, sat-tst, sat-trn, sonar, Lung-Cancer and
Prostate-Cancer). With the increase of δ, the classification accu-
racy first increases, then remains unchanged or decreases. The
9

Fig. 7. Number of selected attribute and accuracy varying with neighborhood δ

sat-tst).

Fig. 8. Number of selected attribute and accuracy varying with neighborhood δ

sat-trn).

Fig. 9. Number of selected attribute and accuracy varying with neighborhood δ

sonar).

osition of the red dot in each figure is the optimal average
lassification accuracy and the selected attribute subset with the
maller size. We choose the corresponding value of δ as the
eighborhood threshold. From Figs. 2–11, we find when δ is in
he interval [0.15, 0.45], classification accuracies of KNN and SVM
are relatively high in most cases, so we recommend the optimal
interval of neighborhood threshold as [0.15, 0.45].
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able 6
lassification accuracies of reduced data and raw data with KNN (%).
Dataset Raw data NRS NSI NDI WNRS

Seeds 92.38± 5.59 93.81± 3.92 93.33± 3.33 91.9± 3.92 94.29± 6.66
Wine 94.90± 7.33 94.93± 5.53 96.63± 2.90 96.63± 3.91 98.89± 2.34
vowel-context 95.76± 2.77 96.97± 1.72 97.17± 1.24 96.57± 2.74 97.37± 1.28
Wdbc 96.31± 0.99 96.84± 2.15 96.84± 2.45 96.13± 2.59 96.32± 2.4
Wpbc 71.16± 12.99 73.16± 8.57 72.26± 10.82 74.74± 10.02 78.39± 9.33
sat-tst 88.15± 1.40 88.40± 1.91 87.95± 3.14 88.00± 1.86 88.65± 2.68
sat-trn 90.33± 1.11 90.46± 1.40 90.48± 1.44 90.51± 1.34 90.58± 1.17
sonar 81.69± 6.80 78.81± 8.88 81.74± 6.25 77.93± 14.1 82.21± 12.5
Lung-Cancer 94.44± 6.93 98.89± 2.34 98.33± 3.75 98.89± 2.34 98.33± 2.68
Prostate-Cancer 76.37± 10.35 81.65± 7.66 77.97± 6.65 80.27± 8.79 88.85± 6.52
Average 88.1490± 5.6260 89.3920± 4.4080 89.2700± 4.1970 89.1570± 5.1610 91.3880± 4.7560
Table 7
Classification accuracies of reduced data and raw data with RBF-SVM (%).
Dataset Raw data NRS NSI NDI WNRS

Seeds 91.90± 5.96 94.29± 3.76 94.76± 3.51 94.29± 7.38 96.19± 4.38
Wine 96.67± 4.68 96.60± 3.93 96.63± 3.91 97.19± 5.42 97.75± 2.91
vowel-context 99.29± 1.07 99.70± 0.49 99.70± 0.49 99.39± 0.85 99.60± 0.71
Wdbc 94.91± 3.25 94.37± 3.40 94.56± 3.55 95.61± 2.65 94.91± 2.54
Wpbc 74.74± 11.07 75.74± 8.48 75.74± 8.52 74.74± 7.51 77.37± 9.71
sat-tst 90.25± 2.00 90.50± 2.35 90.50± 2.08 90.55± 2.15 90.60± 2.08
sat-trn 91.75± 0.85 92.00± 1.06 91.91± 1.19 92.04± 1.06 92.18± 0.93
sonar 85.57± 7.11 81.29± 9.60 83.21± 7.11 77.9± 11.25 86.12± 8.77
Lung-Cancer 97.78± 2.87 99.44± 1.76 99.44± 1.76 98.89± 2.34 98.33± 2.68
Prostate-Cancer 73.63± 17.23 75.99± 14.85 80.82± 14.19 81.1± 12.65 86.76± 6.75
Average 89.6490± 5.6090 89.9920± 4.9680 90.7270± 4.6310 90.1700± 5.3260 91.9810± 4.1460
Table 8
Running time of four reduction algorithms (s).
Dataset NRS NSI NDI WNRS

Seeds 0.0158± 0.0034 0.0999± 0.0131 0.0131± 0.0015 0.0143± 0.0004
Wine 0.0309± 0.0020 0.2343± 0.0155 0.0223± 0.0024 0.0233± 0.0004
vowel-context 3.2924± 0.1540 7.1796± 0.1633 1.3814± 0.0801 2.3048± 0.0472
Wdbc 4.0310± 0.1452 7.367± 0.1147 3.3560± 0.4355 2.7692± 0.4430
Wpbc 0.2944± 0.0408 1.2595± 0.07 0.3792± 0.0358 0.2687± 0.0537
sat-tst 123.2618± 0.8427 205.8333± 12.9959 96.0991± 7.8208 103.2826± 7.2974
sat-trn 677.5580± 20.6859 978.1363± 148.2848 447.4005± 34.4245 537.2471± 18.5589
sonar 1.0150± 0.1288 3.1969± 0.2286 0.4160± 0.0344 0.3330± 0.0545
Lung-Cancer 34.6689± 2.8309 186.8655± 15.9527 10.7487± 1.3415 16.7987± 0.8505
Prostate-Cancer 24.1142± 3.3243 1152.6995± 215.4227 28.9416± 2.7797 17.5283± 1.0708
Average 86.8282± 2.8158 254.2872± 39.3261 58.8758± 4.6956 68.0570± 2.8377
Table 9
Number of selected attributes with four reduction algorithms.
Dataset Raw data NRS NSI NDI WNRS

Seeds 7 5.6± 0.52 6.9± 0.32 6.5± 0.53 6.1± 0.32
Wine 13 6.9± 0.32 7.4± 0.52 6.8± 0.42 5.0± 0.00
vowel-context 13 11.0± 0.00 10.6± 0.52 10.0± 0.00 11.2± 0.79
Wdbc 30 26.7± 0.82 28.1± 0.32 21.1± 2.92 19.1± 2.85
Wpbc 33 16.0± 1.05 19.2± 1.03 19.4± 1.65 14.6± 2.27
sat-tst 36 34.6± 1.17 34.6± 1.07 35.6± 0.97 34.4± 1.35
sat-trn 36 34.4± 0.52 33.1± 0.99 34.0± 0.47 34.3± 0.95
sonar 60 20.2± 1.23 19.6± 1.35 11.2± 0.63 9.5± 0.97
Lung-Cancer 12533 7.5± 0.53 6.1± 0.57 3.8± 0.42 2.9± 0.32
Prostate-Cancer 12600 9.7± 1.06 46.5± 6.52 13.4± 0.7 5.3± 0.48
Average 2536.1 17.26± 0.72 21.21± 1.32 16.18± 0.87 14.24± 1.03
The classification accuracies of the raw data and the reduced
ata by using the four reduction algorithms under KNN and RBF-
VM are shown in Tables 6 and 7, where the boldface highlights
he best performance over different reduction algorithms. From
ables 6 and 7, we can see that the average accuracies of NRS,
SI, NDI and WNRS are better than those of raw data with KNN
nd RBF-SVM. Compared with the average accuracy of raw data,
e can find that the accuracies of NRS, NSI, NDI and WNRS
ith KNN improved by 1.2430%, 1.1210%, 1.0080% and 3.2390%,
espectively. The performances of NRS, NSI, NDI and WNRS with
BF-SVM improved by 0.3430%, 1.0780%, 0.5210% and 2.3320%,
espectively. For classification accuracies of KNN and RBF-SVM,
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WNRS performs best in most cases. Therefore, the performance
of WNRS is obviously better than those of others algorithms.

Running time is an important index to evaluate the feasi-
bility of reduction algorithms. Running time of four reduction
algorithms is shown in Table 8. From Table 8, we know that
the running time of WNRS is slightly worse than that of NDI.
The main reason is that compared with NRS, NSI and WNRS
algorithms, NDI does not need to calculate neighborhood sim-
ilarity classes. The running time of WNRS is obviously better
than that of NRS and NSI. The main reason is that in the WNRS
algorithm, attributes that are highly related to decisions are easier

to select, which makes it possible to quickly find an informative
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Fig. 10. Number of selected attribute and accuracy varying with neighborhood
δ (Lung-Cancer).

Fig. 11. Number of selected attribute and accuracy varying with neighborhood
δ (Prostate-Cancer).

and compact attribute subset. Obviously, both WNRS and NDI are
good reduction algorithms under the condition of ensuring both
computational efficiency and classification accuracy. When there
is a higher demand for classification accuracy, our optimal choice
is WNRS.

The size of selected attribute subsets is an important issue
for attribute reduction. The purpose of attribute reduction is to
find a small and informative attribute subset. The average size
of the selected attribute subsets with 10-fold cross validation is
shown in Table 9. From Table 9, we can see that the average
size of selected attribute subsets by WNRS (14.24) is the smallest
when compared with those of the other reduction algorithms. The
proposed WNRS algorithm has higher compression ratio, which
has obvious advantages in dimension reduction.

WNRS based attribute reduction method can quickly select
fewer attributes with discernment information to obtain effective
classification performance.

6. Conclusion and future work

Removing low correlation and redundant attributes before
classification and regression can improve the performance and
computational efficiency. The traditional attribute reduction based
on neighborhood rough sets only uses the same weights when
computing neighborhood relations and does not fully mine the
internal knowledge of attributes and decisions in advance. In this
work, we first calculate the correlation coefficients of attributes
with respect to decisions to assign different weights to attributes.
11
Then we introduce weights into neighborhood relations to de-
fine weighted neighborhood rough set model and employ the
dependency of weighted neighborhood relation to measure the
significance of attribute subsets. Finally, a greedy attribute subset
selection based on weighted neighborhood rough sets (WNRS)
algorithm is designed to find an attribute subset which is highly
relevant and highly dependent on decisions. Experimental results
show that WNRS can achieve high classification performance
against other state-of-the-art methods.

This paper mainly studies correlation coefficient between at-
tributes and decisions, and it does not mine correlation coeffi-
cient between attributes. In the future, we will assign weights
to attributes by using correlation coefficient between attributes.
Decision information tables with mixed attribute values such as
categorical, real-valued and interval-valued, will be studied.
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